menu

認知アーキテクチャACT-R

date_range 20/05/2021 10:53

ACT-R

  • Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y . (2004). An integrated theory of the mind. Psychological Review 111, (4). 1036-1060.
  • http://act-r.psy.cmu.edu/

ACT-R Assignment Unit8

date_range 16/12/2020 14:36

顔分類タスク


  • a simplification of an experiment which was performed by Robert M. Nosofsky
  • The experiment
    • trained on learning 10 faces (5 of each categories)
    • varied along:
      • eye height (EH)
      • eye seperation (ES)
      • nose length (NL)
      • mouth height (MH)
    • testing phase
      • new faces
      • old faces
  • The model:
    • Not involve any learning mechanism
    • training information pre-encoded in declarative memory, model reset on every trial
    • 流れ:
      • presented with the attributes one at a time
        • name-value
      • collect those attributes into a single chunk (encoded in the imaginal buffer)
      • using the chunk to retrieve a best matching in the DM
      • based on the chunk, make a category choice for the current stimuli
    • Hint
      • first thing to do is to creating stimulus representation from the individual attributes
      • no more than 5 productions
      • use procedual partial matching
      • use dynamic pattern matching
  • The Stimulus Attributes - Goal buffer in the initial state
    • CHUNK1-0
      • NAME EH
      • VALUE 0.7
      • STATE ADD-ATTRIBUTE
      • We have to convert the numeric number 0.7 into a symbolic description stored in a slot of the imaginal buffer
      • small
      • medium
      • large
      • use procedual partial matching and similarity hook to convert numeric attributes t label attributes

ACT-R Tutorial Unit8

date_range 15/12/2020 06:42

Advanced Production Techniques


  • Talk about 2 additional mechanisms in the procedural system
    • procedural partial matching
    • dynamic pattern matching

ACT-R Assignment Unit7

date_range 06/12/2020 14:36

英語過去式を生成する認知モデル

ACT-R Tutorial Unit7

date_range 02/12/2020 14:36

Production Rule Learning